Меню сайта

Категории
Основные статьи [5]
Всё о Сталкере
Дневники разработчиков [3]
Здесь собраны статьи журнала
Рассказы [0]
Творения, присланные нашими посетителями
Кино и мультфильмы [5]

Чат
Спойлеры, реклама и ссылки на другие сайты в чате запрещены

Опрос
Идут технические работы.....

PDA списки
Инфа
Сталкеров голосовало: 63



Главная | Форум |
Главная » Статьи » Основные статьи

Авария на Чернобыльской АЭС
Авария на Чернобыльской АЭС, Черно́быльская ава́рия — разрушение 26 апреля 1986 года четвёртого энергоблока Чернобыльской атомной электростанции, расположенной на территории Украинской ССР (ныне — Украина). Разрушение носило взрывной характер, реактор был полностью разрушен, и в окружающую среду было выброшено большое количество радиоактивных веществ. Авария расценивается как крупнейшая в своём роде за всю историю ядерной энергетики, как по предполагаемому количеству погибших и пострадавших от её последствий людей, так и по экономическому ущербу. На момент аварии Чернобыльская АЭС была самой мощной в СССР. 31 человек погиб в течение первых трех месяцев после аварии; отдалённые последствия облучения, выявленные за последующие 15 лет, стали причиной гибели от 60 до 80 человек. 134 человека перенесли лучевую болезнь той или иной степени тяжести, более 115 тыс. человек из 30-километровой зоны были эвакуированы. Для ликвидации последствий были мобилизованы значительные ресурсы, более 600 тыс. человек участвовали в ликвидации последствий аварии.

В отличие от бомбардировок Хиросимы и Нагасаки, взрыв напоминал очень мощную «грязную бомбу» — основным поражающим фактором стало радиоактивное заражение.

Облако, образовавшееся от горящего реактора, разнесло различные радиоактивные материалы, и прежде всего радионуклиды йода и цезия, по большей части территории Европы. Наибольшие выпадения отмечались на значительных территориях в Советском Союзе, расположенных вблизи реактора и относящихся теперь к территориям Беларуси, Российской Федерации и Украины.

Чернобыльская авария стала событием большого общественно-политического значения для СССР, и это наложило определённый отпечаток на ход расследования её причин. Подход к интерпретации фактов и обстоятельств аварии менялся с течением времени, и полностью единого мнения нет до сих пор.

Чернобыльская АЭС расположена на территории Украины вблизи города Припять, в 18 километрах от города Чернобыль, в 16 километрах от границы с Республикой Беларусь и в 110 километрах от Киева.

Ко времени аварии на ЧАЭС использовались четыре реактора РБМК-1000 (реактор большой мощности канального типа) с электрической мощностью 1000 МВт (тепловая мощность 3200 МВт) каждый. Ещё два аналогичных реактора строились. ЧАЭС производила примерно десятую долю электроэнергии УССР.

Примерно в 1:24 26 апреля 1986 года на 4-м энергоблоке Чернобыльской АЭС произошёл взрыв, который полностью разрушил реактор. Здание энергоблока частично обрушилось, при этом погибли 2 человека — оператор ГЦН (главный циркуляционный насос) Валерий Ходемчук (тело не найдено, завалено под обломками двух 130-тонных барабан-сепараторов) и сотрудник пусконаладочного предприятия Владимир Шашенок (умер от перелома позвоночника и многочисленных ожогов в 6:00 в Припятской МСЧ, утром 26-го апреля). В различных помещениях и на крыше начался пожар. Впоследствии остатки активной зоны расплавились. Смесь из расплавленного металла, песка, бетона и фрагментов топлива растеклась по подреакторным помещениям. В результате аварии произошёл выброс в окружающую среду радиоактивных веществ, в том числе изотопов урана, плутония, йода-131 (период полураспада 8 дней), цезия-134 (период полураспада 2 года), цезия-137 (период полураспада 33 года), стронция-90 (период полураспада 28 лет).

На 25 апреля 1986 года была запланирована остановка 4-го энергоблока Чернобыльской АЭС для очередного планово-предупредительного ремонта. Во время таких остановок обычно проводятся различные испытания оборудования, как регламентные, так и нестандартные, проводящиеся по отдельным программам. В этот раз целью одного из них было испытание так называемого режима «выбега ротора турбогенератора», предложенного проектирующими организациями в качестве дополнительной системы аварийного электроснабжения. Режим «выбега» позволял бы использовать кинетическую энергию ротора турбогенератора для обеспечения электропитанием питательных (ПЭН) и главных циркуляционных насосов (ГЦН) в случае обесточивания электроснабжения собственных нужд станции. Однако данный режим не был отработан или внедрён на АЭС с РБМК. Это были уже четвёртые испытания режима, проводившиеся на ЧАЭС. Первая попытка в 1982 году показала, что напряжение при выбеге падает быстрее, чем планировалось. Последующие испытания, проводившиеся после доработки оборудования турбогенератора в 1983, 1984 и 1985 годах также, по разным причинам, заканчивались неудачно.

Испытания должны были проводиться на мощности 700—1000 МВт (тепловых) 25 апреля 1986 года. Примерно за сутки до аварии (к 3ч 47 мин. 25 апреля) мощность реактора была снижена примерно до 50 % (1600 МВт). В соответствии с программой, отключена система аварийного охлаждения реактора. Однако дальнейшее снижение мощности было запрещено диспетчером Киевэнерго. Запрет был отменён диспетчером в 23 часа. Во время длительной работы реактора на мощности 1600 МВт происходило нестационарное ксеноновое отравление. В течение 25 апреля пик отравления был пройден, началось разотравление реактора. К моменту получения разрешения на дальнейшее снижение мощности оперативный запас реактивности (ОЗР) возрос практически до исходного значения и продолжал возрастать. При дальнейшем снижении мощности разотравление прекратилось, и снова начался процесс отравления.

В течение примерно двух часов мощность реактора была снижена до уровня, предусмотренного программой (около 700 МВт тепловых), а затем, по неустановленной причине, до 500 МВт. В 0 ч 28 мин при переходе с системы локального автоматического регулирования (ЛАР) на автоматический регулятор общей мощности (АР) оператор (СИУР) не смог удержать мощность реактора на заданном уровне, и мощность провалилась (тепловая до 30 МВт и нейтронная до нуля). Персонал, находившийся на БЩУ-4, принял решение о восстановлении мощности реактора и (извлекая поглощающие стержни реактора) через несколько минут добился её роста и в дальнейшем — стабилизации на уровне 160—200 МВт (тепловых). При этом ОЗР непрерывно снижался из-за продолжающегося отравления. Соответственно стержни ручного регулирования (РР) продолжали извлекаться.

После достижения 200 МВт тепловой мощности были включены дополнительные главные циркуляционные насосы, и количество работающих насосов было доведено до восьми. Согласно программе испытаний, четыре из них, совместно с двумя дополнительно работающими насосами ПЭН, должны были служить нагрузкой для генератора «выбегающей» турбины во время эксперимента. Дополнительное увеличение расхода теплоносителя через реактор привело к уменьшению парообразования. Кроме этого, расход относительно холодной питательной воды оставался небольшим, соответствующим мощности 200 МВт, что вызвало повышение температуры теплоносителя на входе в активную зону, и она приблизилась к температуре кипения.

В 1:23:04 начался эксперимент. Из-за снижения оборотов насосов, подключённых к «выбегающему» генератору, и положительного парового коэффициента реактивности (см. ниже) реактор испытывал тенденцию к увеличению мощности (вводилась положительная реактивность), однако в течение почти всего времени эксперимента поведение мощности не внушало опасений.

В 1:23:39 зарегистрирован сигнал аварийной защиты АЗ-5 от нажатия кнопки на пульте оператора. Поглощающие стержни начали движение в активную зону, однако вследствие их неудачной конструкции (см. Концевой эффект) и заниженного (не регламентного) оперативного запаса реактивности реактор не был заглушён. Через одну-две секунды был записан фрагмент сообщения, похожий на повторный сигнал АЗ-5. В следующие несколько секунд зарегистрированы различные сигналы, свидетельствующие о быстром росте мощности, затем регистрирующие системы вышли из строя.

По различным свидетельствам, произошло от одного до нескольких мощных ударов (большинство свидетелей указали на два мощных взрыва), и к 1:23:47—1:23:50 реактор был полностью разрушен.

Существуют по крайней мере два различных подхода к объяснению причин чернобыльской аварии, которые можно назвать официальными, а также несколько альтернативных версий разной степени достоверности.

Государственная комиссия, сформированная в СССР для расследования причин катастрофы, возложила основную ответственность за неё на оперативный персонал и руководство ЧАЭС. МАГАТЭ создало свою консультативную группу, известную как Консультативный комитет по вопросам ядерной безопасности (INSAG), который на основании материалов, предоставленных советской стороной, и устных высказываний специалистов (делегацию советских специалистов возглавил В. А. Легасов, первый заместитель директора ИАЭ имени И. В. Курчатова) в своём отчёте 1986 года также в целом поддержал эту точку зрения. Утверждалось, что авария явилась следствием маловероятного совпадения ряда нарушений правил и регламентов эксплуатационным персоналом, а катастрофические последствия приобрела из-за того, что реактор был приведён в нерегламентное состояние.

Грубые нарушения правил эксплуатации АЭС, совершённые её персоналом, согласно этой точке зрения, заключаются в следующем:

* проведение эксперимента «любой ценой», несмотря на изменение состояния реактора;
* вывод из работы исправных технологических защит, которые просто остановили бы реактор ещё до того, как он попал в опасный режим;
* замалчивание масштаба аварии в первые дни руководством ЧАЭС.

Однако в 1991 году комиссия Госатомнадзора СССР заново рассмотрела этот вопрос и пришла к заключению, что «начавшаяся из-за действий оперативного персонала Чернобыльская авария приобрела неадекватные им катастрофические масштабы вследствие неудовлетворительной конструкции реактора» (c. 35). Кроме того, комиссия проанализировала действовавшие на момент аварии нормативные документы и не подтвердила некоторые из ранее выдвигавшихся в адрес персонала станции обвинений.

В 1993 году INSAG опубликовал дополнительный отчёт, обновивший «ту часть доклада INSAG-1, в которой основное внимание уделено причинам аварии», и уделивший большее внимание серьёзным проблемам в конструкции реактора. Он основан, главным образом, на данных Госатомнадзора СССР и на докладе «рабочей группы экспертов СССР» (эти два доклада включены в качестве приложений), а также на новых данных, полученных в результате моделирования аварии. В этом отчёте многие выводы, сделанные в 1986 году, признаны неверными и пересматриваются «некоторые детали сценария, представленного в INSAG-1», а также изменены некоторые «важные выводы». Согласно отчёту, наиболее вероятной причиной аварии являлись ошибки проекта и конструкции реактора, эти конструктивные особенности оказали основное влияние на ход аварии и её последствия.

Основными факторами, внесшими вклад в возникновение аварии, INSAG-7 считает следующее.

* реактор не соответствовал нормам безопасности и имел опасные конструктивные особенности;
* низкое качество регламента эксплуатации в части обеспечения безопасности;
* неэффективность режима регулирования и надзора за безопасностью в ядерной энергетике, общая недостаточность культуры безопасности в ядерных вопросах как на национальном, так и на местном уровне;
* отсутствовал эффективный обмен информацией по безопасности как между операторами, так и между операторами и проектировщиками, персонал не обладал достаточным пониманием особенностей станции, влияющих на безопасность;
* персонал допустил ряд ошибок и нарушил существующие инструкции и программу испытаний.

В целом INSAG-7 достаточно осторожно сформулировал свои выводы о причинах аварии. Так, например, при оценке различных сценариев.INSAG отмечает, что «в большинстве аналитических исследований тяжесть аварии связывается с недостатками конструкции стержней СУЗ в сочетании с физическими проектными характеристиками», и, не высказывая при этом своего мнения, говорит про «другие ловушки для эксплуатационного персонала. Любая из них могла бы в равной мере вызвать событие, инициирующее такую или почти идентичную аварию», например, такое событие, как «срыв или кавитация насосов» или «разрушение топливных каналов». Затем задаётся риторический вопрос: «Имеет ли в действительности значение то, какой именно недостаток явился реальной причиной, если любой из них мог потенциально явиться определяющим фактором?». При изложении взглядов на конструкцию реактора. INSAG признаёт «наиболее вероятным окончательным вызвавшим аварию событием» «ввод стержней СУЗ в критический момент испытаний» и замечает, что «в этом случае авария явилась бы результатом применения сомнительных регламентов и процедур, которые привели к проявлению и сочетанию двух серьёзных проектных дефектов конструкции стержней и положительной обратной связи по реактивности». Далее говорится: «Вряд ли фактически имеет значение то, явился ли положительный выбег реактивности при аварийном останове последним событием, вызвавшим разрушение реактора. Важно лишь то, что такой недостаток существовал и он мог явиться причиной аварии». INSAG вообще предпочитает говорить не о причинах, а о факторах, способствовавших развитию аварии. Так, например, в выводах причина аварии формулируется так: «Достоверно не известно, с чего начался скачок мощности, приведший к разрушению реактора Чернобыльской АЭС. Определённая положительная реактивность, по-видимому, была внесена в результате роста паросодержания при падении расхода теплоносителя. Внесение дополнительной положительной реактивности в результате погружения полностью выведенных стержней СУЗ в ходе испытаний явилось, вероятно, решающим приведшим к аварии фактором».

Ниже рассматриваются технические аспекты аварии, обусловленные в основном имевшими место недостатками реакторов РБМК, а также нарушениями и ошибками, допущенными персоналом станции при проведении последнего для 4-го блока ЧАЭС эксперимента.

Реактор РБМК-1000 обладал рядом конструктивных недостатков и по состоянию на апрель 1986 года имел десятки нарушений и отступлений от действующих правил ядерной безопасности. Два из этих недостатков имели непосредственное отношение к причинам аварии. Это положительная обратная связь между мощностью и реактивностью, возникавшая при некоторых режимах эксплуатации реактора, и наличие так называемого концевого эффекта, проявлявшегося при определённых условиях эксплуатации. Эти недостатки не были должным образом отражены в проектной и эксплуатационной документации, что во многом способствовало ошибочным действиям эксплуатационного персонала и созданию условий для аварии. После аварии в срочном порядке (первичные уже в мае 1986 года) были осуществлены мероприятия по устранению этих недостатков.

Во время работы реактора через активную зону прокачивается вода, используемая в качестве теплоносителя. Внутри реактора она кипит, частично превращаясь в пар. Реактор имел положительный паровой коэффициент реактивности, то есть чем больше пара, тем больше положительная реактивность (вызывающая возрастание мощности реактора). В тех условиях, в которых работал энергоблок во время эксперимента (малая мощность, большое выгорание, отсутствие дополнительных поглотителей в активной зоне), воздействие положительного парового коэффициента не компенсировалось другими явлениями, влияющими на реактивность, и реактор имел положительный быстрый мощностной коэффициент реактивности. Это значит, что существовала положительная обратная связь — рост мощности вызывал такие процессы в активной зоне, которые приводили к ещё большему росту мощности. Это делало реактор нестабильным и ядерноопасным. Кроме того, операторы не были проинформированы о том, что на низких мощностях может возникнуть положительная обратная связь.

«Концевой эффект» в реакторе РБМК возникал из-за неудачной конструкции стержней СУЗ и впоследствии был признан ошибкой проекта. Суть эффекта заключается в том, что при определённых условиях в течение первых секунд погружения стержня в активную зону может вноситься в реактор положительная реактивность вместо отрицательной. Конструктивно стержень состоит из двух секций: поглотитель (карбид бора) длиной на полную высоту активной зоны и вытеснитель (графит), вытесняющий воду из канала СУЗ при полностью извлечённом поглотителе. Эффект стал возможен только из-за того, что вытеснитель оказался на 1,5 метра короче, чем высота активной зоны, и под стержнем, находящимся в крайнем верхнем положении, в канале СУЗ остаётся столб воды. Его замещение графитом при движении стержня и есть источник положительной реактивности. При погружении стержня в активную зону реактора вода вытесняется в её нижней части, но одновременно в верхней части происходит замещение графита (вытеснителя) карбидом бора (поглотителем), а это вносит отрицательную реактивность. Что перевесит и какого знака будет суммарная реактивность, зависит от формы нейтронного поля и его устойчивости (при перемещении стержня). А это, в свою очередь, определяется многими факторами исходного состояния реактора. Для проявления концевого эффекта в полном объёме (внесение достаточно большой положительной реактивности) необходимо довольно редкое сочетание исходных условий.
Независимые исследования зарегистрированных данных по чернобыльской аварии, выполненные в различных организациях, в разное время и с использованием разных математических моделей, показали, что такие условия существовали к моменту нажатия кнопки АЗ-5 в 1:23:39. Таким образом, срабатывание аварийной защиты АЗ-5 могло быть, за счёт концевого эффекта, исходным событием аварии на ЧАЭС 26 апреля 1986 года.Существование концевого эффекта было обнаружено в 1983 году во время физических пусков 1-го энергоблока Игналинской АЭС и 4-го энергоблока Чернобыльской АЭС.Об этом главным конструктором были разосланы письма на АЭС и во все заинтересованные организации. На особую опасность обнаруженного эффекта обратили внимание в организации научного руководителя, и был предложен ряд мер по его устранению и нейтрализации, включая проведение детальных исследований. Но эти предложения не были осуществлены, и нет никаких сведений о том, что какие-либо исследования были проведены, как и (кроме письма ГК) о том, что эксплуатационный персонал АЭС знал о концевом эффекте.

Единой версии причин аварии, с которой было бы согласно всё экспертное сообщество специалистов в области реакторной физики и техники, не существует. Обстоятельства расследования аварии были таковы, что (и тогда, и теперь) судить о её причинах и следствиях приходится специалистам, чьи организации прямо или косвенно несут часть ответственности за неё. В этой ситуации радикальное расхождение во мнениях вполне естественно. Также вполне естественно, что в этих условиях помимо признанных «авторитетных» версий появилось множество маргинальных, основанных больше на домыслах, нежели на фактах.

Единым (в авторитетных версиях) является только общее представление о сценарии протекания аварии. Её основу составило неконтролируемое возрастание мощности реактора, перешедшее в тепловой взрыв ядерной природы. Авария (её разрушающая фаза) началась с того, что от перегрева ядерного топлива разрушились тепловыделяющие элементы (твэлы) в определенной области в нижней части активной зоны реактора. Это привело к разрушению оболочек нескольких каналов (в которых эти твэлы находятся), и пар (под давлением около 7 МПа) получил выход в реакторное пространство (в котором нормально поддерживается атмосферное давление). Давление в РП резко возросло, что вызвало дальнейшие разрушения уже реактора в целом, в частности отрыв верхней защитной плиты (схема Е) со всеми закрепленными в ней каналами. Герметичность корпуса (обечайки) реактора и вместе с ним контура циркуляции теплоносителя (КМПЦ) была нарушена, и произошло обезвоживание активной зоны реактора. При наличии положительного парового (пустотного) эффекта реактивности 4—5 β это привело к разгону реактора на мгновенных нейтронах (аналог ядерного взрыва) и наблюдаемым масштабным разрушениям со всеми вытекающими последствиями.

Версии принципиально расходятся по вопросу о том, какие именно физические процессы запустили этот сценарий и что явилось исходным событием аварии:

* Произошел ли первоначальный перегрев и разрушение ТВЭЛ из-за резкого возрастания мощности реактора вследствие появления в нём большой положительной реактивности или наоборот, появление положительной реактивности — это следствие разрушения твэл, которое произошло по какой-либо другой причине?
* Было ли нажатие кнопки аварийной защиты АЗ-5 непосредственно перед неконтролируемым возрастанием мощности исходным событием аварии или нажатие кнопки АЗ-5 не имеет никакого отношения к аварии? И что тогда следует считать исходным событием: начало испытаний выбега или незаглушение реактора при провале по мощности за 50 минут до взрыва?

Помимо этих принципиальных различий версии могут расходиться в некоторых деталях сценария протекания аварии, её заключительной фазы (взрыв реактора).

Из основных, признаваемых экспертным сообществом, версий аварии более или менее серьёзно рассмотрены только те, в которых аварийный процесс начинается с быстрого неконтролируемого роста мощности, с последующим разрушением твэл. Наиболее вероятной считается версия , согласно которой «исходным событием аварии явилось нажатие кнопки АЗ-5 в условиях, которые сложились в реакторе РБМК-1000 при низкой его мощности и извлечении из реактора стержней РР сверх допустимого количества». Из-за наличия концевого эффекта при паровом коэффициенте реактивности величиной +5β и в том состоянии, в котором находился реактор, аварийная защита, вместо того чтобы заглушить реактор, запускает аварийный процесс согласно вышеописанному сценарию. Расчёты, выполненные в разное время разными группами исследователей, показывают возможность такого развития событий. Записи системы контроля и показания свидетелей подтверждают эту версию. Однако не все с этим согласны, есть расчёты, выполненные в НИКИЭТ, которые такую возможность отрицают.

Для ликвидации последствий аварии была создана правительственная комиссия, председателем которой был назначен заместитель председателя Совета министров СССР Борис Евдокимович Щербина. От института, разработавшего реактор, в комиссию вошёл химик-неорганик академик В. А. Легасов. В итоге он проработал на месте аварии 4 месяца вместо положенных двух недель. Именно он рассчитал возможность применения и разработал состав смеси (боросодержащие вещества, свинец и доломиты), которой с самого первого дня забрасывали с вертолётов в зону реактора для предотвращения дальнейшего разогрева остатков реактора и уменьшения выбросов радиоактивных аэрозолей в атмосферу. Также именно он, выехав на бронетранспортёре непосредственно к реактору, определил, что показания датчиков нейтронов о продолжающейся ядерной реакции недостоверны, так как они реагируют на мощнейшее гамма-излучение. Проведённый анализ соотношения изотопов йода показал, что на самом деле реакция остановилась. Первые десять суток генерал-майор авиации Н. Т. Антошкин непосредственно руководил действиями личного состава по сбросу смеси с вертолетов.

Для координации работ были также созданы республиканские комиссии в Белорусской, Украинской ССР и в РСФСР, различные ведомственные комиссии и штабы. В 30-километровую зону вокруг ЧАЭС стали прибывать специалисты, командированные для проведения работ на аварийном блоке и вокруг него, а также воинские части, как регулярные, так и составленные из срочно призванных резервистов. Их всех позднее стали называть «ликвидаторами». Ликвидаторы работали в опасной зоне посменно: те, кто набрал максимально допустимую дозу радиации, уезжали, а на их место приезжали другие. Основная часть работ была выполнена в 1986—1987 годах, в них приняли участие примерно 240 000 человек. Общее количество ликвидаторов (включая последующие годы) составило около 600 000.

Во всех сберкассах страны был открыт «счёт 904» для пожертвований граждан, на который за полгода поступило 520 миллионов рублей. Среди жертвователей была Алла Пугачёва, давшая благотворительный концерт в Олимпийском и сольный концерт в Чернобыле для ликвидаторов.

В первые дни основные усилия были направлены на снижение радиоактивных выбросов из разрушенного реактора и предотвращение ещё более серьёзных последствий. Например, существовали опасения, что из-за остаточного тепловыделения в топливе, остающемся в реакторе, произойдёт расплавление активной зоны ядерного реактора. Расплавленное вещество могло бы проникнуть в затопленное помещение под реактором и вызвать ещё один взрыв с большим выбросом радиоактивности. Вода из этих помещений была откачана. Также были приняты меры для того, чтобы предотвратить проникновение расплава в грунт под реактором.

Затем начались работы по очистке территории и захоронению разрушенного реактора. Вокруг 4-го блока был построен бетонный «саркофаг» (т. н. объект «Укрытие»). Так как было принято решение о запуске 1-го, 2-го и 3-го блоков станции, радиоактивные обломки, разбросанные по территории АЭС и на крыше машинного зала были убраны внутрь саркофага или забетонированы. В помещениях первых трёх энергоблоков проводилась дезактивация. Строительство саркофага было завершено в ноябре 1986 года. Работы над саркофагом не обошлись без человеческих жертв: 2 октября 1986 года возле 4-го энергоблока, зацепившись за подъемный кран, потерпел катастрофу вертолёт Ми-8, экипаж из 4 человек погиб.

По данным Российского государственного медико-дозиметрического регистра за прошедшие годы среди российских ликвидаторов с дозами облучения выше 100 мЗв (это около 60 тыс. человек) несколько десятков смертей могли быть связаны с облучением. Всего за 20 лет в этой группе от всех причин, не связанных с радиацией, умерло примерно 5 тысяч ликвидаторов.

Главным конструктором высказываются другие версии начального неконтролируемого роста мощности, в которых причиной этого является не работа СУЗ реактора, а условия во внешнем контуре циркуляции КМПЦ, созданные действиями эксплуатационного персонала. Исходными событиями аварии в этом случае могли бы быть:

* кавитация ГЦН, вызвавшая отключение ГЦН и интенсификацию процесса парообразования с введением положительной реактивности;
* кавитация на ЗРК, вызвавшая поступление дополнительного пара в активную зону с введением положительной реактивности;
* отключение ГЦН собственными защитами, вызвавшее интенсификацию процесса парообразования с введением положительной реактивности.

Версии о кавитации основываются на расчётных исследованиях, выполненных в НИКИЭТ, но по собственному признанию авторов этих расчётов, «детальные исследования кавитационных явлений не выполнялись». Версия отключения ГЦН, как исходного события аварии, не подтверждается зарегистрированными данными системы контроля . Кроме того в адрес всех трёх версий высказывается критика, состоящая в том, что речь идёт по существу не об исходном событии аварии, а о факторах, способствующих её возникновению. Нет количественного подтверждения версий расчётами, моделирующими произошедшую аварию.

Существуют также различные версии, касающиеся заключительной фазы аварии, собственно взрыва реактора. Высказывались предположения, что взрыв, разрушивший реактор, имел химическую природу, то есть это был взрыв водорода, который образовался в реакторе при высокой температуре в результате пароциркониевой реакции и ряда других процессов. Существует версия, что взрыв был исключительно паровым. По этой версии все разрушения вызвал поток пара, выбросив из шахты значительную часть графита и топлива. А пиротехнические эффекты в виде «фейерверка вылетающих раскалённых и горящих фрагментов», которые наблюдали очевидцы, — результат «возникновения пароциркониевой и других химических экзотермических реакций».

По версии, предложенной К. П. Чечеровым, взрыв, имевший ядерную природу, произошёл не в шахте реактора, а в пространстве реакторного зала, куда активная зона вместе с крышкой реактора была выброшена паром, вырывающимся из разорванных каналов. Эта версия хорошо согласуется с характером разрушения строительных конструкций реакторного здания и отсутствием заметных разрушений в шахте реактора, она включена главным конструктором в его версию авари. Первоначально версия была предложена для того, чтобы объяснить отсутствие топлива в шахте реактора, подреакторных и других помещениях (присутствие топлива оценивалось как не более 10 %). Однако последующие исследования и оценки дают основание считать, что внутри построенного над разрушенным блоком «саркофага» находится около 95 % топлива.

Категория: Основные статьи | Добавил: Zmax_111 (11 Апреля 2011) E
Просмотров: 1296 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Поиск
прохожий



Здорово сталкер!
Я всегда рад видеть
еще одну живую душу!
Но я не знаю кто ты?
Регистрация
Вход!

---

Список Сталкеров

Поиск

Реклама

Музыка

Статистика
Rambler's Top100
Всего в зоне: 1
Бродяги: 1
Свои: 0


Нас сегодня посетили:

 
Авторское право на игру и использованные в ней материалы принадлежат GSC Game World.
Любое использование материалов сайта возможно только с разрешения его администрации.
Powered by stalkermir
Хостинг от uCoz . © (2008-2024)